AKAP18:PKA-RIIα structure reveals crucial anchor points for recognition of regulatory subunits of PKA.
نویسندگان
چکیده
A-kinase anchoring proteins (AKAPs) interact with the dimerization/docking (D/D) domains of regulatory subunits of the ubiquitous protein kinase A (PKA). AKAPs tether PKA to defined cellular compartments establishing distinct pools to increase the specificity of PKA signalling. Here, we elucidated the structure of an extended PKA-binding domain of AKAP18β bound to the D/D domain of the regulatory RIIα subunits of PKA. We identified three hydrophilic anchor points in AKAP18β outside the core PKA-binding domain, which mediate contacts with the D/D domain. Such anchor points are conserved within AKAPs that bind regulatory RII subunits of PKA. We derived a different set of anchor points in AKAPs binding regulatory RI subunits of PKA. In vitro and cell-based experiments confirm the relevance of these sites for the interaction of RII subunits with AKAP18 and of RI subunits with the RI-specific smAKAP. Thus we report a novel mechanism governing interactions of AKAPs with PKA. The sequence specificity of each AKAP around the anchor points and the requirement of these points for the tight binding of PKA allow the development of selective inhibitors to unequivocally ascribe cellular functions to the AKAP18-PKA and other AKAP-PKA interactions.
منابع مشابه
Engineering A-kinase Anchoring Protein (AKAP)-selective Regulatory Subunits of Protein Kinase A (PKA) through Structure-based Phage Selection*
PKA is retained within distinct subcellular environments by the association of its regulatory type II (RII) subunits with A-kinase anchoring proteins (AKAPs). Conventional reagents that universally disrupt PKA anchoring are patterned after a conserved AKAP motif. We introduce a phage selection procedure that exploits high-resolution structural information to engineer RII mutants that are select...
متن کاملCharacterization of PKA isoforms and kinase-dependent activation of chloride secretion in T84 cells.
Chloride exit across the apical membranes of secretory epithelial cells is acutely regulated by the cAMP-mediated second messenger cascade. To better understand the regulation of transepithelial chloride secretion, we have characterized the complement of cAMP-dependent protein kinase (PKA) isoforms present in the human colonic epithelial cell line T84. Our results show that both type I and type...
متن کاملEthanol Activation of Protein Kinase A Regulates GABAA Receptor Subunit Expression in the Cerebral Cortex and Contributes to Ethanol-Induced Hypnosis
Protein kinases are implicated in neuronal cell functions such as modulation of ion channel function, trafficking, and synaptic excitability. Both protein kinase C (PKC) and A (PKA) are involved in regulation of γ-aminobutyric acid type A (GABA(A)) receptors through phosphorylation. However, the role of PKA in regulating GABA(A) receptors (GABA(A)-R) following acute ethanol exposure is not know...
متن کاملAnchoring of both PKA-RIIα and 14-3-3θ regulates retinoic acid induced 16 mediated phosphorylation of heat shock protein 70
Our previous study reported that retinoic acid induced 16 (RAI16) could enhance tumorigenesis in hepatocellular carcinoma (HCC). However, the cellular functions of RAI16 are still unclear. In this study, by immunoprecipitation and tandem (MS/MS) mass spectrometry analysis, we identified that RAI16 interacted with the type II regulatory subunit of PKA (PKA-RIIα), acting as a novel protein kinase...
متن کاملPrediction of peptides binding to the PKA RIIα subunit using a hierarchical strategy
MOTIVATION Favorable interaction between the regulatory subunit of the cAMP-dependent protein kinase (PKA) and a peptide in A-kinase anchoring proteins (AKAPs) is critical for translocating PKA to the subcellular sites where the enzyme phosphorylates its substrates. It is very hard to identify AKAPs peptides binding to PKA due to the high sequence diversity of AKAPs. RESULTS We propose a hier...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 473 13 شماره
صفحات -
تاریخ انتشار 2016